Skip to Content

Design principles of molecular machines: efficient control and functional coupling

Date:  Thursday, April 11th, 2019

Time: 4:00pm

Location: 100 Willamette Hall

Speaker: David Sivak, Simon Fraser University

Abstract: Biomolecular machines are central actors in a myriad of major cell biological process. Their successful function requires effective energy conversion among diverse mechanical components, and time-reversal symmetry-breaking to achieve directed transport. It seems plausible that evolution has sculpted these machines to effectively transduce free energy in their natural contexts, where stochastic fluctuations are large, nonequilibrium driving forces are strong, and biological imperatives require rapid turnover. But what are the physical limits on such nonequilibrium effectiveness, and what machine designs actually achieve these limits? In this talk, I discuss how to rapidly and efficiently drive such noisy systems from one state to another, and how to allocate nonequilibrium driving forces among the steps of a machine cycle to maximize its throughput. These theoretical results find confirmation in experiments and provide nontrivial yet intuitive implications for the design principles of molecular-scale free energy transduction.

Host: Tristan Ursell

All attendees are invited to attend a colloquium reception in the Willamette Hall, Paul Olum atrium at 3:40pm.

Colloquium Preview

Colloquium Archive