Skip to Content

A Programmable Quantum Computer Based on Trapped Ions

Date:  Thursday,  February 15, 2018

Speaker:  Norbert Linke, Joint Quantum Institute, University of Maryland Department of Physics and National Institute of Standards and Technology

Trapped ions are a promising candidate system to realize a scalable quantum computer. We present a modular quantum computing architecture comprised of a chain of 171Yb+ ions with individual Raman beam addressing and individual readout [1]. We use the transverse modes of motion in the chain to produce entangling gates between any qubit pair. This creates a fully connected system which can be configured to run any sequence of single- and two-qubit gates, making it in effect an arbitrarily programmable quantum computer that does not suffer any swap-gate overhead [2].
Recent results from different quantum algorithms on five ions will be presented [3,4], including a quantum error detection protocol that fault-tolerantly encodes a logical qubit [5]. I will also discuss current work with seven ions and ideas to scale up this architecture.

[1] S. Debnath et al., Nature 563:63 (2016).
[2] NML et al., PNAS 114 13:3305 (2017).
[3] C. Figgatt et al., Nat. Communs. 8, 1918 (2017).
[4] NML et al., arXiv:1712.08581 (2017)
[5] NML et al., Sci. Adv. 3, 10 (2017).

Host:  Mike Raymer

Catered Reception: 3:40pm-3:55pm, Willamette Hall, Paul Olum Atrium

Colloquium Preview

Colloquium Archive