Skip to Content

Colloquium

« Previous Page  Page 2 of 9  Next Page »
March 29, 2016

Biologically Inspired Soft Matter Devices in Robotics

Date: Thursday, March 31st, 2016

Speaker: Yigit Menguc, Oregon State University

Abstract:

Incredible biological mechanisms have emerged through evolution, and can provide a wellspring of inspiration for engineers. One promising area emerging from biological inspiration is the design of devices and robots made of compliant materials, as part of a larger field of research in “soft robotics.” In this talk, the topics of designing soft, biologically inspired mechanisms will be presented in two case studies: controllable adhesives and soft wearable sensors. Additionally, the talk will cover the methods of fabricating soft devices through 3D printing, soft lithography, and laser micromachining. Surfaces covered in arrays of micro-fibers, inspired by the toes of a gecko, rely on compliance to repeatedly and controllably adhere to almost any surface while simultaneously shedding dirt. Sensors made of liquid metal encapsulated in rubber as soft as skin can track motion of the human body while naturally moving with its kinematics. However, these exciting soft mechanisms have certain challenges. The biological mechanisms that serve as a source of inspirations are made of materials that are vastly more compliant than the metal and plastic that engineers and roboticists normally use. To imitate and improve on nature’s design, we must create mechanisms with materials like fabric and rubber. It is difficult to characterize these hyperelastic, viscoelastic, and generally nonlinear materials, and it is difficult to integrate them into traditional fabrication techniques, but the development of such soft robotic devices promises to bring robots more and more into our daily lives.

Host: Eric Corwin

Time: 4:00-5:00pm
Location: 100 Willamette Hall

 

Colloquium Archive

 

March 18, 2016

Topology and Localization with Long-range Interactions

Special Physics/ITS Colloquium, Tuesday, March 29th, 2016

Speaker: Chris Laumann, University of Washington

Abstract:

The trapping of ultracold atomic gases has opened new windows into the quantum phases of neutral particles. A remarkable amount of pretty physics – Bose condensation, Cooper paired superfluidity and Mott localization – has been observed. Even more remarkably this has been done with interactions, which are typically short-ranged and weak.

Recent progress in the control of long-range interacting systems — polar molecules, Rydberg atoms and trapped ions — allows a completely different piece of physics to enter the game. In this talk, I will review the general setting and then give two examples of how long-range interactions can lead to new physics inaccessible in existing systems.

First, I will describe the adiabatic preparation of topologically ordered phases in driven, dipolar-interacting spin systems. Second, in the presence of strong disorder, I will show that these systems can directly explore physics beyond that of single particle Anderson localization and will comment on recent experiments. Finally, time permitting, I will combine these stories and describe how localization can protect topological order far out-of-equilibrium.

Time: 4:00-5:00pm
Location: 331 Klamath Hall

Host: Dietrich Belitz

Colloquium Archive

 

March 4, 2016

Searching for Ultra-High Energy Cosmic Rays with Smartphones

Physics Colloquium, Thursday, March 10th, 2016

Speaker: Daniel Whiteson, University of California, Irvine

Abstract:

We propose a novel approach for observing cosmic rays at ultra-high energy (10^18 eV) by repurposing the existing network of smartphones as a ground detector array. Extensive air showers generated by cosmic rays produce muons and high-energy photons, which can be detected by the CMOS sensors of smartphone cameras. The small size and low efficiency of each sensor is compensated by the large number of active phones. We show that if user adoption targets are met, such a network will have significant observing power at the highest energies.

Time: 4:00-5:00pm
Location: 100 Willamette Hall

Host: Michael Raymer

Colloquium Archive

 

February 26, 2016

Universality in Soft Active Matter

Physics Colloquium, Thursday, March 3rd, 2016

Speaker: Chiu Fan Lee, Imperial College, London

Abstract:

Biology systems operate in the far from equilibrium regime and one defining feature of living organisms is their motility. In the hydrodynamic limit, a system of motile organisms may be viewed as a form of active matter, which has been shown to exhibit behaviour analogous to that found in equilibrium systems, such as phase separation in the case of motility-induced aggregation, and critical phase transition in incompressible active fluids. In this talk, I will use the concept of universality to categorise some of the emergent behaviour observed in active matter. Specifically, I will show that i) the coarsening kinetics of motility-induced phase separation belongs to the Lifshitz-Slyozov-Wagner universality class [1]; ii) the order-disorder phase transition in incompressible polar active fluids (IPAF) constitutes a novel universality class [2], and iii)  the behaviour of IPAF in the ordered phase in 2D belongs to the Kardar-Parisi-Zhang universality class [3].

References:

[1]          C. F. Lee, “Interface stability, interface fluctuations, and the Gibbs-Thomson relation in motility-induced phase separations,” arXiv: 1503.08674, 2015.

[2]          L. Chen, J. Toner, and C. F. Lee, “Critical phenomenon of the order-disorder transition in incompressible active fluids,” New Journal of Phyics, 17, 042002, 2015.

[3]          L. Chen, C. F. Lee, and J. Toner, “Birds, magnets, soap, and sandblasting: surprising connections to incompressible polar active fluids in 2D,” arXiv:1601.01924, 2016.

Time: 4:00-5:00pm
Location: 100 Willamette Hall

Host: Dietrich Belitz

Colloquium Archive

 

 

February 19, 2016

Complexity of Multi-photon Interferometry

Physics Colloquium, Thursday, February 25th, 2016

Speaker: Hubert de Guise, Lakehead University

Abstract:

The simulation of many fully indistinguishable photons interfering at the output of a random interferometer with many more channels than photons supplies a link between computational complexity theory and linear optics.  This link is the basic ingredient of the BosonSampling problem, an idea originating with Aaronson and Arkhipov in 2011.

This colloquium will discuss some simple aspects of multi-photon interferometry, with emphasis on partial distinguishability of photons and its consequences on and connections with computationally complex functions of the scattering matrix.

Some work reported in this colloquium has been done in collaboration with colleagues from Calgary, Vienna and Singapore, and others.

Time: 4:00-5:00pm
Location: 100 Willamette Hall

Host: Michael Raymer

Colloquium Archive

 

 

February 15, 2016

Shaking Up Statistical Physics in Interacting Quantum Systems

Physics Colloquium, Thursday, February 18th, 2016

Speaker: Anushya Chandran, Perimeter Institute

Abstract:

Statistical mechanics is a central pillar of modern science with applications ranging from sociology to economics. At its core is the idea of thermal equilibrium, which allows for a simple description of an interacting quantum system in terms of a few properties like temperature, without keeping track of the entire wavefunction. But what if a quantum system fails to equilibrate?

In this talk, I will discuss how we are discovering the answer to this question theoretically and experimentally. I’ll focus on two settings: disordered systems and periodically driven systems. In the former, many-body localization can prevent thermalization even at very high energy densities. The transition between the localized and the thermal phase is a fascinating dynamical quantum transition about which little is known. I will derive a rigorous constraint on this transition and apply it to current numerical studies and cold atomic experiments. Clean periodically driven systems, on the other hand, generically absorb heat indefinitely. I will present one physical setting of interacting bosons in which this expectation fails.

Time: 4:00-5:00pm
Location: 100 Willamette Hall

Host: Dietrich Belitz

Colloquium Archive

February 9, 2016

Physics of Information Processing in Living Systems

Physics Colloquium, Thursday, February 11th, 2016

Speaker: Yuhai Tu, IBM T.J. Watson Research Center

Abstract:

Living organisms need to obtain and process information that are crucial for their survival. These information processes, ranging from signal transduction in a single cell to image processing in the human brain, are performed by biological circuits (networks). However, these biochemical or neural circuits are inherently noisy. Yet, certain accuracy is required to carry out proper biological functions. How do biological networks process information accurately and efficiently? What is the energy cost of biological computing? Is there a fundamental limit for its performance? In this talk, we will describe our recent work in trying to address these questions in the context of two basic cellular computing tasks: sensory adaptation for memory encoding [1,2]; biochemical oscillation for accurate timekeeping [3].

[1] “The energy-speed-accuracy trade-off in sensory adaptation”, G. Lan, P. Sartori, S. Neumann, V. Sourjik, and Yuhai Tu, Nature Physics 8, 422-428, 2012.
[2] “Free energy cost of reducing noise while maintaining a high sensitivity”, Pablo Sartori and Yuhai Tu, Phys. Rev. Lett. 2015. 115: 118102.
[3] “The free-energy cost of accurate biochemical oscillations”, Y. Cao, H. Wang, Q. Ouyang, and Yuhai Tu, Nature Physics 11, 772, 2015.

Time: 4:00-5:00pm
Location: 100 Willamette Hall

Host: Dietrich Belitz

Colloquium Archive

February 1, 2016

Do two-dimensional metals exist?

Physics Colloquium, Thursday, February 4th, 2016

Speaker: Michael Mulligan, Stanford University

Abstract:
Conventional wisdom teaches us that electrons confined to a two-dimensional quantum well will do one of three things as the temperature is lowered to zero: superconduct, insulate, or exhibit the so-called quantum Hall effect. (Here, I am concentrating on the types of order as revealed in electrical charge transport; finer distinctions can be made, e.g., magnetic ordering.) Nature, however, is stubborn and doesn’t always listen. In this talk, I will describe two experimental systems that surprisingly appear to violate the conventional wisdom and instead exhibit a metallic phase at zero temperature. I will argue that there is a deep analogy between the two systems that relates their behaviors and discuss how such novel metallic phases can explain other unconventional low-temperature quantum orders.

Host: Dietrich Belitz

January 22, 2016

LSST: a color movie of the Universe coming near you!

Physics Colloquium, Thursday, January 28th, 2016

Speaker: Željko Ivezić,, University of Washington

Abstract:

The Large Synoptic Survey Telescope (LSST) will carry out an imaging survey covering the sky that is visible from Cerro Pachon in Northern Chile, with first light in 2019. With close to 1000 observations in ugrizy bands over a 10-year period, this data will enable deep coadded maps across half the sky reaching hundred times fainter flux level than the Sloan Digital Sky Survey (SDSS). About 20 billion galaxies and a similar number of stars will be detected in these maps — for the first time in history, the number of cataloged celestial objects will exceed the number of living people. The time-resolved observations will open a movie-like window on objects that change brightness, or move, on timescales ranging from 10 seconds to 10 years. With a raw data rate of about 15 TB per night (about the same as one SDSS per night), LSST will collect over 100 PB of data over its lifetime, resulting in an incredibly rich and extensive public archive that will be a treasure trove for breakthroughs in many areas of astronomy and physics, ranging from the properties of near-Earth asteroids to characterizations of dark energy and dark matter. I will provide an overview of the main science drivers and a status report for the federally-funded construction project that started in 2014.

Host: Spencer Chang

Colloquium Archive

 

January 15, 2016

Emerging Phases and Phase Transitions in Quantum Matter

Physics Colloquium, Thursday, January 21st, 2016

Speaker: Thomas Vojta
Missouri University of Science and Technology

Abstract:

Condensed matter physics deals with the complex behavior of
many-particle systems. Novel phases of matter can emerge as a
result of strong interactions between the constituent
particles. A natural place to look for these phenomena are
quantum phase transitions, the boundaries between different
quantum ground states of matter.

This talk first gives an introduction into quantum phase
transitions and then discusses several novel phases of matter
that have been discovered in their vicinity in solids and in
ultracold atomic gases. These include exotic superconductors
and magnets as well as Griffiths phases that are dominated
by strong disorder.

Host: Dietrich Belitz

http://physics.uoregon.edu/colloquium-archive/colloquium/

 

 

« Previous Page  Page 2 of 9  Next Page »